Preparation of Flexible Dye-sensitized Solar Cells Based on Hierarchical Structure ZnO Nanosheets
نویسندگان
چکیده
منابع مشابه
ZnO nanotube based dye-sensitized solar cells.
We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addit...
متن کاملZnO Nanostructures for Dye-Sensitized Solar Cells
This Review focuses on recent developments in the use of ZnO nanostructures for dye-sensitized solar cell (DSC) applications. It is shown that carefully designed and fabricated nanostructured ZnO films are advantageous for use as a DSC photoelectrode as they offer larger surface areas than bulk film material, direct electron pathways, or effective light-scattering centers, and, when combined wi...
متن کاملAerogel Templated ZnO Dye-Sensitized Solar Cells
Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 have exhibited solar energy-conversion efficiencies of over 10% and remain one of the most promising candidates for cost-effective solar energy conversion devices. The most efficient DSSCs reported to date utilize a high surface area photoanode, which allows for good light harvesting with a moderate extinction dye, in contact with...
متن کاملInfluence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells
A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inorganic Materials
سال: 2018
ISSN: 1000-324X
DOI: 10.15541/jim20170325